Abstract

The spatial resolution of a Chemiluminescence Sensor, based on focused Cassegrain optics, to detect the location of the reaction zone and heat-release rate in a model gas turbine combustor is reported. The sensor measures simultaneously the chemiluminescent intensities from OH* and CH* excited radicals in flames in order to obtain information on the local flame characteristics. The spatial resolution was evaluated by a combined theoretical and experimental study in laminar and turbulent flames and was supported by detailed chemistry calculations, including the chemiluminescent species, of unstrained one-dimensional flames. The experimental study involved simultaneous measurements of chemiluminescence with the sensor and laser-based reaction rate imaging, using the product of OH and CH2O radicals obtained from planar laser-induced fluorescence (PLIF), and OH PLIF for the location of the reaction zone. The study quantified the influence of flame shape and dimensions and the direction of traverse of the focal region of the sensor through the flames on the spatial resolution, thereby identifying the limitations and optimising the applicability of the sensor. The sensor was used to obtain local time-dependent measurements of heat-release and equivalence ratio of a reacting mixture, based on the chemiluminescent intensity ratio of OH*/CH*, in a swirl-stabilised model gas turbine combustor and quantified the degree of air–fuel premixedness, probability of reaction and power spectra of pressure and chemiluminescent intensity fluctuations in two unsteady flames.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.