Abstract

Pattern formation mechanisms in developing organisms determine cellular differentiation and function. However, the components that interact during the manifestation of a spatial pattern are in general unknown. Characean algae represent a model system to study pattern formation. These algae develop alternating acid and alkaline transport domains that influence the pattern of growth. In the present study, it will be demonstrated that a diffusion mechanism is implicated in acid and alkaline domain formation and this growth pattern. Experiments on the characean growth pattern were performed that resulted in pronounced, however, unpredictable modifications in the original pattern. A major component involved in this pattern-forming mechanism emerged from the nonlinear kinetics of the H(+)-ATPase that is located in the plasma membrane of these algae. Based on these kinetics, a mathematical model was developed and numerically analyzed. As a result, the contribution of a diffusional component to the characean acid/alkaline pattern appeared most likely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.