Abstract
Yam (Dioscorea spp.) is a major staple crop with high agricultural and cultural significance for over 300 million people in West Africa. Despite its importance, productivity is miserably low. A better understanding of the environmental context in the region is essential to unlock the crop's potential for food security and wealth creation. The article aims to characterize the production environments into homologous mega-environments, having operational significance for breeding research. Principal component analysis (PCA) was performed separately on environmental data related to climate, soil, topography, and vegetation. Significant PCA layers were used in spatial multivariate cluster analysis. Seven clusters were identified for West Africa; four were country-specific; the rest were region-wide in extent. Clustering results are valuable inputs to optimize yam varietal selection and testing within and across the countries in West Africa. The impact of breeding research on poverty reduction and problems of market accessibility in yam production zones were highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Geospatial Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.