Abstract

The multifractal properties of electronic wave functions in disordered samples are investigated. In a given energy range all eigenstates are determined for the same disorder configuration in the Anderson model of localization. It is shown that the singularity spectrum and the generalized dimensions change only slowly with energy, aside from statistical fluctuations. More important, the wave packet constructed by linear combination of the eigenstates shows quantitatively the same multifractal properties. Consequences for the transport properties of electronic states in disordered systems are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.