Abstract

We investigate a time-dependent spatial vector-host epidemic model with non-coincident domains for the vector and host populations. The host population resides in small non-overlapping sub-regions, while the vector population resides throughout a much larger region. The dynamics of the populations are modeled by a reaction-diffusion-advection compartmental system of partial differential equations. The disease is transmitted through vector and host populations in criss-cross fashion. We establish global well-posedness and uniform a prior bounds as well as the long-term behavior. The model is applied to simulate the outbreak of bluetongue disease in sheep transmitted by midges infected with bluetongue virus. We show that the long-range directed movement of the midge population, due to wind-aided movement, enhances the transmission of the disease to sheep in distant sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.