Abstract

ABSTRACTSalinity as an important property of soil plays a major role in reducing the fertility in the world. Accurate information about the spatial change of soil salinity is essential for sustainable soil management and utilization in agriculture lands. For this purpose, 150 soil samples were collected from Dashte-e-Tabriz Iran and tested and soil salinity was estimated by land surface parameters including elevation, aspect, length of slope, wetness index, slope and normalized difference vegetation index as basic parameters. In order to model and predict the salinity, ordinary kriging (OK), artificial neural networks (ANN) and multiple linear regressions (MLR) were used. Accuracy of models was evaluated by the coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE). Based on Pearson correlation, elevation, normalized difference vegetation and wetness indices were selected for soil salinity spatial modeling from six land surface parameters. The results showed that the ANN had the lowest RMSE and highest R2. The values of R2, RMSE and MAE were 0.36, 25.89 and 17.06 for regression and 0.56, 17.70 and 13.05 for OK and 0.69, 16.06 and 11.60 for ANN, respectively, which indicated more accuracy of ANN in comparison with MLR and OK.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.