Abstract

Plume interpolation consists of estimating contaminant concentrations at unsampled locations using the available contaminant data surrounding those locations. The goal of ground water plume interpolation is to maximize the accuracy in estimating the spatial distribution of the contaminant plume given the data limitations associated with sparse monitoring networks with irregular geometries. Beyond data limitations, contaminant plume interpolation is a difficult task because contaminant concentration fields are highly heterogeneous, anisotropic, and nonstationary phenomena. This study provides a comprehensive performance analysis of six interpolation methods for scatter-point concentration data, ranging in complexity from intrinsic kriging based on intrinsic random function theory to a traditional implementation of inverse-distance weighting. High resolution simulation data of perchloroethylene (PCE) contamination in a highly heterogeneous alluvial aquifer were used to generate three test cases, which vary in the size and complexity of their contaminant plumes as well as the number of data available to support interpolation. Overall, the variability of PCE samples and preferential sampling controlled how well each of the interpolation schemes performed. Quantile kriging was the most robust of the interpolation methods, showing the least bias from both of these factors. This study provides guidance to practitioners balancing opposing theoretical perspectives, ease-of-implementation, and effectiveness when choosing a plume interpolation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.