Abstract

The aim of this study was to define the overall distribution pattern of the axon collaterals of single inferior olive (IO) neurons in relation to the multiple somatotopic maps defined by the climbing fiber (CF) input through the cerebellar cortex. In a previous study (Rosina and Provini: Brain Res. 289:45-63, '83), it was shown that the IO neurons supply interlobar collaterals to pairs of somatotopically related areas in the intermediate part of the anterior lobe (PIAL), in the paramedian lobule (PML), in crus II, and in the simple lobule, within strips C1 to D2. The residual branches then could either distribute within single folia or to adjacent folia within each somatotopically defined cerebellar area or both. We studied whether or not the IO axons branch over neighboring folia of the face-forelimb (FL) areas of PIAL and PML and how this interfolial branching relates to the interlobar collateralization by using the multiple fluorescent retrograde tracing technique. The main results of the study were as follows: the axons from neurons in IO subdivisions that are related to strips C1-C3 give off two interfolial branches in the FL area of PIAL and practically no interfolial collaterals are given in the FL area of PML; and the neurons that give off interfolial collaterals also give interlobar branches. From these data we have inferred the general branching pattern of the IO neurons that convey FL information to PIAL and PML. Each neuron gives off two interlobar collaterals: the branch directed to PIAL splits again into two interfolial collaterals, while each of these three collaterals should give off about three branches within each target folium to account for the ten collaterals estimated to be present in the cat. The distribution pattern of IO axon collaterals proposed here suggests that the same CF-relayed information may interact, at the Purkinje cell level, with different sets of mossy fiber inputs. The effect of this interaction would be to modulate the motor commands forwarded to specific muscle groups in relation to the different conditions under which a given movement is executed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.