Abstract

The present study focused on to determine the concentration and health risk of heavy metals (Cu, Pb, Zn, Cd, Hg, Cr) in e-waste contaminated soils collected from different provinces of Pakistan. Further, the impact of heavy metals on soil enzyme activities and microbial community was also investigated. The concentration (mg/kg) of Hg, Zn, Fe, Cu, Pb, Cd, and Cr ranged between 0-0.258, 2.284-6.587, 3.005-40.72, 8.67-36.88, 12.05-35.03, 1.03-2.43, and33.13-60.05, respectively. The results revealed that Lahore site of Punjab province indicated more concentration of heavy metals as compared to other sites. The level of Cr at all sites whereas Hg at only two sites exceeds the World Health Organization standards (WHO) for soil. Soil enzyme activity exhibited dynamic trend among the sites. Maximum enzyme activity was observed for urease followed by phosphatase and catalase. Contamination factor (Cf), Pollution load index (PLI), and geo-accumulation index (Igeo) results showed that all the sites are highly contaminated with Cu, Cd, and Pb. Hazard index (HI) was less than 1 for children and adults suggesting non-carcinogenic health risk. Principle component analysis results depicted relation among Cr, Fr, catalase, and actinomycetes; Cd, OM, urease, and bacteria, and Pb, Cu, Zn, Hg, and phosphatase, suggesting soil enzymes and microbial community profiles were influenced by e-waste pollution. Therefore, there is a dire need to introduce sustainable e-waste recycling techniques as well as to make stringent e-waste management policies to reduce further environmental contamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.