Abstract

Super-resolution localization microscopy (SRLM) is a new imaging modality that is capable of resolving cellular structures at nanometer resolution, providing unprecedented insight into biological processes. Each SRLM image is reconstructed from a time series of images of randomly activated fluorophores that are localized at nanometer resolution and represented by clusters of particles of varying spatial densities. SRLM images differ significantly from conventional fluorescence microscopy images because of fundamental differences in image formation. Currently, however, quantitative image analysis techniques developed or optimized specifically for SRLM images are lacking, which significantly limit accurate and reliable image analysis. This is especially the case for image segmentation, an essential operation for image analysis and understanding. In this study, we propose a simple SRLM image segmentation technique based on estimating and smoothing spatial densities of fluorophores using adaptive anisotropic kernels. Experimental results showed that the proposed method provided robust and accurate segmentation of SRLM images and significantly outperformed conventional segmentation approaches such as active contour methods in segmentation accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.