Abstract
We investigate a quasi-one dimensional system of trapped cold bosonic atoms in an optical lattice by using the density matrix renormalization group to study the Bose-Hubbard model at T=0 for experimentally realistic numbers of lattice sites. It is shown that a properly rescaled one-particle density matrix characterizes superfluid versus insulating states just as in the homogeneous system. For typical parabolic traps we also confirm the widely used local density approach for describing correlations in the limit of weak interaction. Finally, we note that the superfluid to Mott-insulating transition is seen most directly in the half width of the interference peak.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.