Abstract
ABSTRACT Studies of large-scale structures in the Universe, such as superstructures or cosmic voids, have been widely used to characterize the properties of the cosmic web through statistical analyses. On the other hand, the two-point correlation function of large-scale tracers such as galaxies or haloes provides a reliable statistical measure. However, this function applies to the spatial distribution of point-like objects, and therefore it is not appropriate for extended large structures that strongly depart from spherical symmetry. Here we present an analysis based on the standard correlation function formalism that can be applied to extended objects exhibiting arbitrary shapes. Following this approach, we compute the probability excess Ξ of having spheres sharing parts of cosmic structures with respect to a realization corresponding to a distribution of the same structures in random positions. For this aim, we identify superstructures defined as future virialized structures (FVSs) in semi-analytic galaxies in the MPDL2 MultiDark simulation. We have also identified cosmic voids to provide a joint study of their relative distribution with respect to the superstructures. Our analysis suggests that Ξ provides useful characterizations of the large-scale distribution, as suggested from an analysis of subsets of the simulation. Even when superstructure properties may exhibit negligible variations across the subsets, Ξ has the sensitivity to statistically distinguish sub-boxes that depart from the mean at larger scales. Thus, our methods can be applied in analysis of future surveys to provide characterizations of large-scale structure suitable to distinguish different theoretical scenarios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.