Abstract

Attention typically amplifies neuronal responses evoked by task-relevant stimuli while attenuating responses to task-irrelevant distracters. In this context, visual distracters constitute an external source of noise that is diminished to improve attended signal quality. Activity that is internal to the cortex itself, stimulus-independent ongoing correlated fluctuations in firing, might also act as task-irrelevant noise. To examine this, we recorded from area V4 of macaques performing an attention-demanding task. The firing of neurons to identically repeated stimuli was highly variable. Much of this variability originates from ongoing low-frequency (<5 Hz) fluctuations in rate correlated across the neuronal population. When attention is directed to a stimulus inside a neuron's receptive field, these correlated fluctuations in rate are reduced. This attention-dependent reduction of ongoing cortical activity improves the signal-to-noise ratio of pooled neural signals substantially more than attention-dependent increases in firing rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.