Abstract

An atmospheric-pressure spatial atomic layer deposition (AP-SALD) system is used to deposit nitrogen-doped alumina (N-AlOx) thin-film-encapsulation layers. The rapid nature of the AP-SALD process facilitates deposition of 60-nm layers directly on perovskite solar cells at 130 °C with no damage to the temperature-sensitive perovskite and organic materials. Varying the bubbling of a NH4OH precursor varied the nitrogen concentration from 0.08 to 0.68 at%. These small concentrations were found to have a significant impact on the structural properties of the films and their moisture barrier performance. The N-AlOx thin films had slightly higher growth rates than undoped AlOx, less unwanted hydroxyl and carbon content, and were smoother and more compact, which was attributed to a higher flux of reactive species from the volatile NH4OH. Optical calcium tests showed that the N-AlOx films had lower water-vapor-transmission rates (∼10-5 g/m2/day) than undoped AlOx films and the transmission was minimized for 0.28% nitrogen. The increased compactness of the N-AlOx films is expected to minimize nanoscale percolation pathways, whereas higher nitrogen-defect concentrations may facilitate water permeation through these pathways. The stability of n-i-p and p-i-n perovskite solar cells under standard ISOS-D-1 and ISOS-D-3 testing conditions was significantly enhanced by the encapsulation layers. An N-AlOx encapsulation layer with 0.28% nitrogen improved the T80 value of a p-i-n formamidinium methylammonium lead iodide solar cell from 144 hrs to 855 hrs (ISOS-D-1) and 52 hrs to 300 hrs (ISOS-D-3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.