Abstract

Prior research from this laboratory examined minimal stimulus conditions that allow for recognition of objects. Using briefly flashed dots that marked the outer border of objects, it was found that timing differentials within and among successive dot pairs affected recognition, with significant declines being seen by the addition of temporal separations in the millisecond range. These experiments were done with dot pairs that had close spatial proximity, which leaves open the possibility that the effects could be attributed to strictly local neural encoding processes. The present research reports that spatial separation of pair members resulted in declines in recognition that were similar to those produced with close spacing of pair members. Both for close and separated dot pairs, recognition was best when they were displayed with near simultaneity, which likely generated synchronized spikes in the retina. These results provide cognitive evidence in support of proposals that synchronous neural activity is part of the image encoding process. The physiological literature is surveyed and discussed in an effort to delineate the issues, and a tentative model of retinal response to these stimulus conditions is offered.

Highlights

  • "The conduction of one nerve tract is not insulated from that taking place in the remaining tracts

  • It may come as a surprise, to learn that recognition is possible where very little information is provided with respect to the boundary, and with brief display of these minimal cues. Previous research from this laboratory has found that one can replace the outer boundary of an object with a spaced set of dots, each being shown successively for only a tenth of a millisecond, and subjects can still name the object at a level that is far above chance [2,3]. This is designated as the minimal transient discrete cue (MTDC) protocol

  • If the pairs are presented with fairly close spatial proximity of pair-members but with choice of location for successive pairs being random, the level of recognition is significantly affected by time differentials in the millisecond range

Read more

Summary

Introduction

"The conduction of one nerve tract is not insulated from that taking place in the remaining tracts. A great many objects can be named when all of the internal features have been deleted, leaving only a silhouette boundary It may come as a surprise, to learn that recognition is possible where very little information is provided with respect to the boundary, and with brief display of these minimal cues. Previous research from this laboratory has found that one can replace the outer boundary of an object with a spaced set of dots, each being shown successively for only a tenth of a millisecond, and subjects can still name the object at a level that is far above chance [2,3]. Stimulus sets were the same for both experiments, as were task conditions except for timing differentials for display of successive dots

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.