Abstract

BackgroundMarine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning. This is particularly true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. Compared to other latitudes, Polar sediment habitats also experience additional environmental drivers of strong seasonality and intense disturbance from iceberg scouring, which are major structural forces for hard substratum communities. This study compared sediment assemblages from two coves, near Rothera Point, Antarctic Peninsula, 67°S in order to understand the principal drivers of community structure, for the first time, evaluating composition across all size classes from mega- to micro-fauna.ResultsMorpho-taxonomy identified 77 macrofaunal species with densities of 464–16,084 individuals m−2. eDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene. Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, although the main taxonomic drivers varied between techniques. Morphotaxonomy identified the main differences between coves as the mollusc, Altenaeum charcoti, the cnidarian Edwardsia sp. and the polychaetes from the family cirratulidae. Metabarcoding identified greater numbers of species of nematodes, crustaceans and Platyhelminthes in South Cove, but more bivalve species in Hangar Cove. There were no detectable differences in community composition, measured through morphotaxonomy, between seasons, years or due to iceberg disturbance.ConclusionsThis study found that unlike hard substratum communities the diversity of Antarctic soft sediment communities is correlated with the same factors as other latitudes. Diversity was significantly correlated with grain size and organic content, not iceberg scour. The increase in glacial sediment input as glaciers melt, may therefore be more important than increased iceberg disturbance.

Highlights

  • Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning

  • Morpho‐taxonomy of mega‐ and macro‐fauna A total of 55,536 individuals were identified from 8 phyla, 14 classes, 37 orders, 62 families

  • 72 genera and 77 species could be distinguished, with most families represented in 3 major phyla (Additional file 1: Table S1)

Read more

Summary

Introduction

Marine soft sediments are some of the most widespread habitats in the ocean, playing a vital role in global carbon cycling, but are amongst the least studied with regard to species composition and ecosystem functioning This is true of the Polar Regions, which are currently undergoing rapid climate change, the impacts of which are poorly understood. EDNA metabarcoding of microfauna, in summer only, identified a higher diversity, 189 metazoan amplicon sequence variants (ASVs) using the 18S ribosomal RNA and 249 metazoan ASVs using the mitochondrial COI gene Both techniques recorded a greater taxonomic diversity in South Cove than Hangar Cove, with differences in communities between the coves, the main taxonomic drivers varied between techniques. At the moment there is very little understanding as to whether the drivers that shape sediment communities in temperate and tropical regions are the same at the poles or, whether, the “extra” contributing ecological factors in the poles, which are currently changing, will impact soft sediment communities in the future

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.