Abstract

In this paper we analyse the spatial footprint and temporal clustering of extreme sea level and skew surge events around the UK coast over the last 100 years (1915–2014). The vast majority of the extreme sea level events are generated by moderate, rather than extreme skew surges, combined with spring astronomical high tides. We distinguish four broad categories of spatial footprints of events and the distinct storm tracks that generated them. There have been rare events when extreme levels have occurred along two unconnected coastal regions during the same storm. The events that occur in closest succession (<4 days) typically impact different stretches of coastline. The spring/neap tidal cycle prevents successive extreme sea level events from happening within 4–8 days. Finally, the 2013/14 season was highly unusual in the context of the last 100 years from an extreme sea level perspective.

Highlights

  • Coastal floods are a major global hazard leading to long-lasting and wide-ranging social, economic and environmental consequences

  • Some of the skew surge events coincide with the extreme sea level events, when the storm surge occurred around the time of high water of a spring tide; others do not coincide, because the surge occurred near low tide or on a neap tide

  • A key finding is that the vast majority (86%) of the extreme sea level events were generated by moderate, rather than extreme skew surges, combined with high spring tides

Read more

Summary

Introduction

Coastal floods are a major global hazard leading to long-lasting and wide-ranging social, economic and environmental consequences. In 2005, New Orleans was flooded by Hurricane Katrina, resulting in 800 deaths and $40 billion in damages[1,2,3]. New York on the US east coast resulting in $71 billion in damages[5]. In 2013, Typhoon Haiyan impacted the Philippines killing 8,000 people and destroyed one million homes, much of the damage due to extreme sea levels[6]. In 2016, Hurricane Matthew caused considerable loss of life and destruction along the coasts of the Caribbean and southeastern US. These events demonstrate the ever-present threat of serious coastal flood impacts despite improved technology and experience, which has provided tools to forecast and mitigate flooding risks. Continuing to improve the understanding of extreme sea level and coastal flood events is of utmost importance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.