Abstract
Assuming that a robot trajectory is given from a high-level planning or learning mechanism, it needs to be adapted to react to dynamic environment changes. In this article we propose a novel approach to deform trajectories while keeping their local shape similar, which is based on the discrete Laplace---Beltrami operator. The approach can be readily extended and covers multiple deformation techniques including fixed waypoints that must be passed, positional constraints for collision avoidance or a cooperative manipulation scheme for the coordination of multiple robots. Due to its low computational complexity it allows for real-time trajectory deformation both on local and global scale and online adaptation to changed environmental constraints. Simulations illustrate the straightforward combination of the proposed approach with other established trajectory-related methods like artificial potential fields or prioritized inverse kinematics. Experiments with the HRP-4 humanoid successfully demonstrate the applicability in complex daily-life tasks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.