Abstract
We study sparsity in the max-plus algebraic setting. We seek both exact and approximate solutions of the max-plus linear equation with minimum cardinality of support. In the former case, the sparsest solution problem is shown to be equivalent to the minimum set cover problem and, thus, NP-complete. In the latter one, the approximation is quantified by the $\ell_{1}$ residual error norm, which is shown to have supermodular properties under some convex constraints, called lateness constraints. Thus, greedy approximation algorithms of polynomial complexity can be employed for both problems with guaranteed bounds of approximation. We also study the sparse recovery problem and present conditions, under which, the sparsest exact solution solves it. Through multi-machine interactive processes, we describe how the present framework could be applied to two practical discrete event systems problems: resource optimization and structure-seeking system identification. We also show how sparsity is related to the pruning problem. Finally, we present a numerical example of the structure-seeking system identification problem and we study the performance of the greedy algorithm via simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.