Abstract

To study quantile regression in partial functional linear model where response is scalar and predictors include both scalars and multiple functions, wavelet basis are usually adopted to better approximate functional slopes while effectively detect local features. The sparse group lasso penalty is imposed to select important functional predictors while capture shared information among them. The estimation problem can be reformulated into a standard second-order cone program and then solved by an interior point method. A novel algorithm is proposed by using alternating direction method of multipliers (ADMM) which was recently employed by many researchers in solving penalized quantile regression problems. The asymptotic properties such as the convergence rate and prediction error bound have been established. Simulations and a real data from ADHD-200 fMRI data are investigated to show the superiority of our proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.