Abstract
This study concerned conebeam travel-time tomography. The focus was on a sparse distribution of signal sources that can be necessary in a challenging in situ environment such as in asteroid tomography. The goal was to approximate the minimum number of source positions needed for robust detection of refractive anomalies, e.g., voids within an asteroid or a casting defects in concrete. Experimental ultrasonic data were recorded utilizing as a target a 150 mm plastic cast cube containing three stones with diameter between 22 and 41 mm. A signal frequency of 55 kHz (35 mm wavelength) was used. Source counts from one to six were tested for different placements. Based on our statistical inversion approach and analysis of the results, three or four sources were found to lead to reliable inversion. The source configurations investigated were also ranked according to their performance. Our results can be used, for example, in the planning of planetary missions as well as in material testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.