Abstract
Sparse representation for robust face recognition is a novel concept in the pattern analysis and machine learning community. Through the l <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> -minimization model, representing a test sample as the sparse combination of the training dictionary can effectively achieve facial images classification. However, when the number of training samples is relatively small, it is insufficient to give the test sample a sparse representation so that the recognition performance degenerates seriously. In this paper, we present a novel approach that employs the elastic net regularized regression model. Experimental results on several databases show that the proposed strategy improves the recognition accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.