Abstract

Face recognition is a challenging research topic, especially when the training (gallery) and recognition (probe) images are acquired using different cameras under varying conditions. Even a small noise or occlusion in the images can compromise the accuracy of recognition. Lately, sparse encoding based classification algorithms gave promising results for such uncontrollable scenarios. In this paper, we introduce a novel methodology by modeling the sparse encoding with weighted patches to increase the robustness of face recognition even further. In the training phase, we define a mask (i.e., weight matrix) using a sparse representation selecting the facial regions, and in the recognition phase, we perform comparison on selected facial regions. The algorithm was evaluated both quantitatively and qualitatively using two comprehensive surveillance facial image databases, i.e., SCfaceandMFPV, with the results clearly superior to common state-of-the-art methodologies in different scenarios. Publisher’s Note: This paper, originally published on 24 December 2013, was replaced with a revised version on 11 June 2014. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.