Abstract

Principal component analysis (PCA) is widely used for feature extraction and dimension reduction in pattern recognition and data analysis. Despite its popularity, the reduced dimension obtained from the PCA is difficult to interpret due to the dense structure of principal loading vectors. To address this issue, several methods have been proposed for sparse PCA, all of which estimate loading vectors with few non-zero elements. However, when more than one principal component is estimated, the associated loading vectors do not possess the same sparsity pattern. Therefore, it becomes difficult to determine a small subset of variables from the original feature space that have the highest contribution in the principal components. To address this issue, an adaptive block sparse PCA method is proposed. The proposed method is guaranteed to obtain the same sparsity pattern across all principal components. Experiments show that applying the proposed sparse PCA method can help improve the performance of feature selection for image processing applications. We further demonstrate that our proposed sparse PCA method can be used to improve the performance of blind source separation for functional magnetic resonance imaging data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.