Abstract
The partial least-squares (PLS) method is designed for prediction problems where the number of predictors is larger than the number of training samples. PLS is based on latent components that are linear combinations of all of the original predictors, so it automatically employs all predictors regardless of their relevance. This will potentially compromise its performance, but it will also make it difficult to interpret the result. In this paper, we propose a new formulation of the sparse PLS (SPLS) procedure to allow both sparse variable selection and dimension reduction. We use the standard L 1-penalty and the unbounded penalty of [1]. We develop a computing algorithm for SPLS by modifying the nonlinear iterative partial least-squares (NIPALS) algorithm, and illustrate the method with an analysis of a cancer dataset. Through the numerical studies we find that our SPLS method generally performs better than the standard PLS and other existing methods in variable selection and prediction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.