Abstract

The sufficient dimension reduction (SDR) with sparsity has received much attention for analysing high-dimensional data. We study a nonparametric sparse kernel sufficient dimension reduction (KSDR) based on the reproducing kernel Hilbert space, which extends the methodology of the sparse SDR based on inverse moment methods. We establish the statistical consistency and efficient estimation of the sparse KSDR under the high-dimensional setting where the dimension diverges as the sample size increases. Computationally, we introduce a new nonconvex alternating directional method of multipliers (ADMM) to solve the challenging sparse SDR and propose the nonconvex linearised ADMM to solve the more challenging sparse KSDR. We study the computational guarantees of the proposed ADMMs and show an explicit iteration complexity bound to reach the stationary solution. We demonstrate the finite-sample properties in simulation studies and a real application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.