Abstract

In this paper, we present a sparse image reconstruction approach for radar imaging through multilayered media with total variation minimization (TVM). The approach is well suited for high-resolution imaging for both ground penetrating radar (GPR) and through-the-wall radar imaging (TWRI) applications. The multilayered media Green’s function is incorporated in the imaging algorithm to efficiently model the wave propagation in the multilayered environment. For GPR imaging, the multilayered subsurface Green’s function is derived in closed form with saddle point method, which is significantly less time consuming than numerical methods. For through-the-wall radar imaging, where the first and last layers are freespace, a far field approximation of the Green’s function in analytical form is used to model the wave propagation through single or multilayered building walls. The TVM minimizes the gradient of the image resulting in excellent edge preservation and shape reconstruction of the image. Representative examples are presented to show high quality imaging results with limited data under various subsurface and through-the-wall imaging scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.