Abstract

AbstractReinforcement learning is challenging if state and action spaces are continuous. The discretization of state and action spaces and real-time adaptation of the discretization are critical issues in reinforcement learning problems.In our contribution we consider the adaptive discretization, and introduce a sparse gradient-based direct policy search method. We address the issue of efficient states/actions selection in the gradient-based direct policy search based on imposing sparsity through the L 1 penalty term. We propose to start learning with a fine discretization of state space and to induce sparsity via the L 1 norm.We compare the proposed approach to state-of-the art methods, such as progressive widening Q-learning which updates the discretization of the states adaptively, and to classic as well as sparse Q-learning with linear function approximation. We demonstrate by our experiments on standard reinforcement learning challenges that the proposed approach is efficient.KeywordsDirect policy search Q-learningmodel selection

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.