Abstract

Summary We consider estimation in a sparse additive regression model with the design points on a regular lattice. We establish the minimax convergence rates over Sobolev classes and propose a Fourier-based rate optimal estimator which is adaptive to the unknown sparsity and smoothness of the response function. The estimator is derived within a Bayesian formalism but can be naturally viewed as a penalized maximum likelihood estimator with the complexity penalties on the number of non-zero univariate additive components of the response and on the numbers of the non-zero coefficients of their Fourer expansions. We compare it with several existing counterparts and perform a short simulation study to demonstrate its performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.