Abstract
Wetting Na metal on the solid electrolyte of a liquid Na battery determines the operating temperature and performance of the battery. At low temperatures below 200 °C, liquid Na wets poorly on a solid electrolyte near its melting temperature (Tm = 98 °C), limiting its suitability for use in low-temperature batteries used for large-scale energy-storage systems. Herein, we propose the use of sparked reduced graphene oxide (rGO) that can improve the Na wetting in sodium-beta alumina batteries (NBBs), allowing operation at lower temperatures. Experimental and computational studies indicated rGO layers with nanogaps exhibited complete liquid Na wetting regardless of the surface energy between the liquid Na and the graphene oxide, which originated from the capillary force in the gap. Employing sparked rGO significantly enhanced the cell performance at 175 °C; the cell retained almost 100% Coulombic efficiency after the initial cycle, which is a substantial improvement over cells without sparked rGO. These results suggest that coating sparked rGO is a promising but simple strategy for the development of low-temperature NBBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.