Abstract

Turbulent flow evolution and energy cascades are significantly different in two-dimensional (2-D) and three-dimensional (3-D) flows. Studies have investigated these differences in obstacle-free turbulent flows, but solid boundaries have an important impact on the cross-over from 3-D to 2-D turbulence dynamics. In this work, we investigate the span effect on the turbulence nature of flow past a circular cylinder at $Re=10\,000$. It is found that even for highly anisotropic geometries, 3-D small-scale structures detach from the walls. Additionally, the natural large-scale rotation of the Kármán vortices rapidly two-dimensionalise those structures if the span is 50 % of the diameter or less. We show this is linked to the span being shorter than the Mode B instability wavelength. The conflicting 3-D small-scale structures and 2-D Kármán vortices result in 2-D and 3-D turbulence dynamics which can coexist at certain locations of the wake depending on the domain geometric anisotropy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.