Abstract

We apply two methods to evaluating the spall signature from underground chemical explosions such as those at the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS). The first approach uses the Rayleigh integral to compute overpressures for buried explosions from synthetic vertical acceleration data at surface ground zero. To obtain the acceleration data, we systematically vary parameters such as the spall duration, depth of burial and magnitude and observe the effect on the resulting acoustic waveform shape. The second method uses a hydrodynamic approach to more fully characterize the varied parameters to produce the acoustic waveforms. As the spall decreases we find that the acoustic waveform shape changes dramatically. This waveform signature may provide diagnostics on the explosive source and may be a useful metric for underground explosion monitoring. [This work was done under award number DE-AC52-06NA25946. Sandia National Laboratories is a multi-program laboratory managed an...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.