Abstract

Contaminant accumulation in organisms can be influenced by both biological traits and environmental conditions. However, delineating the main factors affecting contaminant burdens in organisms remains challenging. Here, we conducted an initial investigation into the impact of diet and habitat on the accumulation of short- (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in Indo-Pacific humpback dolphins (2003–2020, n = 128) from the Pearl River Estuary (PRE), a highly polluted estuary in China. The detected levels of SCCPs (5897 ± 3480 ng g−1 lw) and MCCPs (13,960 ± 8285 ng g−1 lw) in blubber samples of humpback dolphin are the highest among recorded values marine mammals. Both SCCPs and MCCPs exhibited biomagnification factor values exceeding 1, suggesting their biomagnification potential within the dolphins and their diet. Quantitative diet analysis using the dolphin fatty acid signatures revealed that humpback dolphins inhabiting the western PRE consumed a larger proportion of carnivorous fish than those from the eastern PRE. However, spatial analysis showed that humpback dolphins in the western PRE contained lower SCCP/MCCP concentrations than those from the eastern PRE. Based on these findings we suggest that, compared to diet differences, spatial variations of SCCPs/MCCPs in humpback dolphins may be predominantly influenced by their space-use strategies, as the eastern PRE is closer to the pollutant discharge source and transfer routes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.