Abstract

We consider point-to-point wireless links with multiple antennas in the presence of interference, and exploit channel's spatial correlation and the temporal covariance of the interference to design multiantenna transmitters. We develop a space-time spreading scheme that maximizes average signal-to-interference-and-noise ratio, and an optimally power-loaded space-time beamforming (STBF) scheme which improves error-probability performance. In order to increase transmission rates, we combine orthogonal space-time block coding with STBF, optimize power loading across beams, and develop low-complexity receivers. Optimal training for least-squares error channel estimation, and STBF for minimum mean-square error channel estimation, are also studied. Our analytical and simulated results corroborate that STBF with optimal power loading can considerably reduce error probability and channel-estimation errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.