Abstract

In high-frequency surface wave radar (HFSWR) systems, clutter is a common phenomenon that causes objects to be submerged. Space-time adaptive processing (STAP), which uses two-dimensional data to increase the degrees of freedom, has recently become a crucial tool for clutter suppression in advanced HFSWR systems. However, in STAP, the pattern is distorted if a clutter component is contained in the main lobe, which leads to errors in estimating the target angle and Doppler frequency. To solve the main-lobe distortion problem, this study developed a clutter-suppression method based on beam reshaping (BR). In this method, clutter components were estimated and maximally suppressed in the side lobe while ensuring that the main lobe remained intact. The results of the proposed algorithm were evaluated by comparison with those of standard STAP and sparse-representation STAP (SR-STAP). Among the tested algorithms, the proposed BR algorithm had the best suppression performance and the most accurate main-lobe peak response, thereby preserving the target angle and Doppler frequency information. The BR algorithm can assist with target detection and tracking despite a background with ionospheric clutter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.