Abstract

Ciliary neurotrophic factor (Cntf) plays an essential role in postnatal maintenance of spinal motoneurons. Whereas the expression of this neurotrophic factor is low during embryonic development, it is highly up-regulated after birth in myelinating Schwann cells of rodents. To characterize the underlying transcriptional mechanisms, we have analyzed and compared the effects of various glial transcription factors. In contrast to Pit-1, Oct-1, Unc-86 homology region (POU) domain class 3, transcription factor 1 (Oct6/SCIP/Tst-1) and paired box gene 3 (Pax3), SRY-box-containing gene 10 (Sox10) induces Cntf expression in Schwann cells. Subsequent promoter analysis using luciferase reporter gene and EMSA identified the corresponding response elements within the Cntf promoter. Overexpression of Sox10 in primary sciatic nerve Schwann cells leads to a >100-fold up-regulation of Cntf protein, and suppression of Sox10 by RNA interference in the spontaneously immortalized Schwann cell line 32 reduces Cntf expression by >80%. Mice with heterozygous inactivation of the Sox10 gene show significantly reduced Cntf protein levels in sciatic nerves, indicating that Sox10 is necessary and sufficient for regulating Cntf expression in the peripheral nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.