Abstract

Abstract We present biogenic opal flux records from two deep-sea sites in the Scotia Sea (MD07-3133 and MD07-3134) at decadal-scale resolution, covering the last glacial cycle. In addition to conventional and time-consuming biogenic opal measuring methods, we introduce new biogenic opal estimation methods derived from sediment colour b *, wet bulk density, Si/Ti-count ratio and Fourier transform infrared spectroscopy (FTIRS). All methods capture the biogenic opal amplitude; however, FTIRS–a novel method for marine sediment – yields the most reliable results. 230 Th normalization data show strong differences in sediment focusing with intensified sediment focusing during glacial times. At MD07-3134 230 Th normalized biogenic opal fluxes vary between 0.2 and 2.5 g cm −2 kyr −1 . Our biogenic opal flux records indicate bioproductivity changes in the Southern Ocean, strongly influenced by sea ice distribution and also summer sea surface temperature changes. South of the Antarctic Polar Front, lowest bioproductivity occurred during the Last Glacial Maximum when upwelling of mid-depth water was reduced and sea ice cover intensified. Around 17 ka, bioproductivity increased abruptly, corresponding to rising atmospheric CO 2 and decreasing seasonal sea ice coverage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.