Abstract

We present here spectroscopic compositional analysis of brown carbon (BrC) and humic-like substances (HULIS) in the Indian context under varying conditions of source emissions and atmospheric processing. To this end, we study bulk water-soluble organic matter (WSOM), neutral- and acidic-HULIS (HULIS-n and HULIS-a), and high-polarity (HP)-WSOM collected in the eastern Indo-Gangetic Plain (IGP) with respect to UV–Vis, fluorescence, FT-IR, 1H NMR and 13C characteristics under three aerosol regimes: photochemistry-dominated summer, aged biomass burning (BB)-dominated post-monsoon, and fresh BB-dominated winter. Absorption coefficients (babs_365 nm; Mm−1) of WSOM and HULIS fractions increase by a factor of 2–9 during winter as compared to summer, with HULIS-n dominating total HULIS + HP-WSOM absorption (73–81%). Fluorophores in HULIS-n appear to contain near-similar levels of aromatic and unsaturated aliphatic conjugation across seasons, while HULIS-a exhibits distinctively smaller-chain structures in summer and post-monsoon. FT-IR spectra reveals, among others, strong signatures of aromatic phenols in winter WSOM suggesting a BB-related origin. 1H NMR-based source attribution coupled with back trajectory analysis indicate the presence of secondary and BB-related organic aerosol (SOA and BBOA) in the post-monsoon and winter, and marine-derived OA (MOA) in the summer, which is supported by 13C measurements. Overall, these observations uncover a complex interplay of emissions and atmospheric processing of carbonaceous aerosols in the IGP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.