Abstract

Extreme ultraviolet (EUV) lithography plays a vital role in the advanced technology nodes of integrated circuits manufacturing. Source mask optimization (SMO) is a critical resolution enhancement technique (RET) or EUV lithography. In this paper, an SMO method for EUV lithography based on the thick mask model and social learning particle swarm optimization (SL-PSO) algorithm is proposed to improve the imaging quality. The thick mask model's parameters are pre-calculated and stored, then SL-PSO is utilized to optimize the source and mask. Rigorous electromagnetic simulation is then carried out to validate the optimization results. Besides, an initialization parameter of the mask optimization (MO) stage is tuned to increase the optimization efficiency and the optimized mask's manufacturability. Optimization is carried out with three target patterns. Results show that the pattern errors (PE) between the print image and target pattern are reduced by 94.7%, 76.9%, 80.6%, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.