Abstract

This paper considers source excitation strategies in finite difference time domain room acoustics simulations for auralization purposes. We demonstrate that FDTD simulations can be conducted to obtain impulse responses based on unit impulse excitation, this being the shortest, simplest and most efficiently implemented signal that might be applied. Single, rather than double, precision accuracy simulations might be implemented where memory use is critical but the consequence is a remarkably increased noise floor. Hard source excitation introduces a discontinuity in the simulated acoustic field resulting in a shift of resonant modes from expected values. Additive sources do not introduce such discontinuities, but instead result in a broadband offset across the frequency spectrum. Transparent sources address both of these issues and with unit impulse excitation the calculation of the compensation filters required to implement transparency is also simplified. However, both transparent and additive source excitation demonstrate solution growth problems for a bounded space. Any of these approaches might be used if the consequences are understood and compensated for, however, for room acoustics simulation the hard source is the least favorable due to the fundamental changes it imparts on the underlying geometry. These methods are further tested through the implementation of a directional sound source based on multiple omnidirectional point sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.