Abstract

Due to their great environmental hazards, the widely used legacy perfluoroalkyl acids (PFAAs) are gradually restricted, and novel alternatives are being developed and applied. For efficient control of emerging environmental risks in agricultural production, we systematically studied the source apportionment in field soils and bioaccumulation characteristics in multiple crops of 12 PFAAs and five novel alternatives in an industrial-intensive region of China, followed by human exposure estimation and health risk assessment. Compared with perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), shorter-chained PFAAs and novel alternatives have become the dominant components in local soils and crops, indicating their wide application. A positive matrix factorization (PMF) model coupled with multivariate analysis identified fluoropolymer manufacturing and textile treatment as the principal sources. The bioaccumulation factors (BAFs) of individual PFAAs and alternatives in crops decreased with increasing carbon chain lengths. As a novel alternative of PFOA, hexafluoropropylene oxide dimer acid (GenX) exhibited much higher BAFs; for the alternative of PFOS, 6:2 chlorinated polyfluorinated ether sulfonic acid (6:2 Cl-PFESA) showed lower BAFs. The bioaccumulation capacities of PFAAs and alternatives were also associated with soil organic matter and crop species. Through crop consumption, short-chained PFAAs and novel alternatives might pose emerging human health threats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.