Abstract
Synthetic Biology Live cell imaging allows us to observe cellular processes in real time. Most methods rely on light, and the poor penetration of light into tissues limits their application. Ultrasound penetrates tissues, and cellular reporters that respond to ultrasound have been developed recently. These reporters are air-filled protein structures that provide buoyancy in the bacteria they are derived from, but when surrounded by a fluid medium, they reflect sound waves. Farhadi et al. achieved expression from multiple genes to create these complex structures in mammalian cells. In addition to optimizing reporter production and detection, they visualize cells in a proof-of-principle experiment in mouse tumor xenografts. Science , this issue p. [1469][1] [1]: /lookup/doi/10.1126/science.aax4804
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.