Abstract
This paper presents the first results of an imaging technique that measures the geoacoustic structure of a seafloor in shallow water areas. The devices used were a broadband (100 Hz-6 kHz) acoustic source towed by a ship and a vertical array. Among all the acoustic paths existing in the water column, two are used: the direct one and the seabed-reflected one, the latter being composed of the reflections from the seafloor's surface as well as that from each buried layer. Due to the good time resolution of the signal and to the short range configuration, the reflected signal can be modeled as a sum of contributions coming from image sources relative to the seabed layers. The seabed geometry and the sound speed profile can then be recovered with the detection and localization of these image sources. The map of the image sources is obtained by a function that combines back-propagation of signals and knowledge of the emitted pulse. The thickness and sound-speed of each layer is finally obtained by a position analysis of the image sources. The results obtained by this data-driven algorithm on both at-sea and synthetic data are satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.