Abstract

It has been argued that the sound radiation of a loudspeaker is modeled realistically by assuming the loudspeaker cabinet to be a rigid sphere with a resilient spherical cap. Series expansions, valid in the whole space outside the sphere, for the pressure due to a harmonically excited cap with an axially symmetric velocity distribution are presented. The velocity profile is expanded in functions orthogonal on the cap, rather than on the whole sphere. As a result, only a few expansion coefficients are sufficient to accurately describe the velocity profile. An adaptation of the standard solution of the Helmholtz equation to this particular parametrization is required. This is achieved by using recent results on argument scaling of orthogonal (Zernike) polynomials. The approach is illustrated by calculating the pressure due to certain velocity profiles that vanish at the rim of the cap to a desired degree. The associated inverse problem, in which the velocity profile is estimated from pressure measurements around the sphere, is also feasible as the number of expansion coefficients to be estimated is limited. This is demonstrated with a simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.