Abstract

A comparative study is conducted of the propagation of sound pulses in elongated Bose liquids and Bose-Einstein condensates in Gross-Pitaevskii and logarithmic models, by means of the Thomas-Fermi approximation. It is demonstrated that in the linear regime the propagation of small density fluctuations is essentially one-dimensional in both models, in the direction perpendicular to the cross section of a liquid’s lump. Under these approximations, it is demonstrated that the speed of sound scales as a square root of particle density in the case of the Gross-Pitaevskii liquid/condensate, but it is constant in a case of the homogeneous logarithmic liquid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.