Abstract

Environmental monitoring requires that large numbers of samples be processed in a relatively short period of time. While microbioassays facilitate rapid testing, the results are often difficult to interpret in the broader context of human or animal health. Determining the consequences of exposure to genotoxic substances will ultimately require in situ monitoring of exposed organisms. However, it is immediately possible to construct a broad empirical framework within which available microbioassay results can be interpreted. To do this for SOS Chromotest results, we investigated the empirical relationships between SOS genotoxic potency and mutagenic potency (as measured with the Salmonella/microsome assay), as well as between genotoxic potency and carcinogenic potency (as measured using standard, chronic animal bioassays). Strong relationships were identified between; 1) genotoxic potency and mutagenic potency for 268 direct-acting substances (r2=0.76) and 2) genotoxic potency and mutagenic potency for 126 S9-activated substances (r2=0.65). Ordinary least squares regression analyses of the SOS genotoxicity-Salmonella mutagenicity relationship revealed a significant effect of SOS genotoxicity as well as differences in mutagenic potency that can be attributed to the Salmonella strain used to measure mutagenic potency. Analyses of S9-activated substances revealed a significant interaction between the SOS genotoxic potency (SOSIP) effect and the Salmonella strain effect. Two regression models relating SOS genotoxicity and Salmonella mutagenicity were used to predict the mutagenic potency of several industrial effluent extracts previously analyzed for SOS genotoxicity by White et al. [(1996): Environ Mol Mutagen 27:116-139]. Predictions are consistent with published mutagenic potency values for similar industrial waste materials. A consistent relationship was also identified between genotoxic potency and carcinogenic potency for 51 substances. Linear regression analyses revealed an effect of SOS genotoxic potency as well as differences in carcinogenic potency that may be attributable to experimental animal and route of exposure. The correlation between genotoxicity and carcinogenicity was fairly weak (maximum r value = 0.51). Previous studies revealed similar strength of association between Ames mutagenicity and carcinogenicity. Predicted carcinogenic potencies of previously examined genotoxic, industrial effluent extracts are generally low compared to the pure substances included in the data set.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.