Abstract

Plastics are now the dominant fraction of anthropogenic marine debris and as a result of their long residence times, it is important to determine the threats that plastics present to marine ecosystems including their ability to sorb a diversity of environmental pollutants such as trace metals. To address this knowledge gap, this study examined the sorption of cadmium (Cd), copper (Cu), mercury (Hg), lead (Pb), and zinc (Zn) by macro- and microplastics of polyethylene terephthalate (PETE) and high-density polyethylene (HDPE) within marine intertidal sediments in a human-impacted area of Burrard Inlet (British Columbia, Canada). Trace metal sorption by macro- and microplastics was dependent on 1) polymer characteristics, notably the aging of the plastic over the duration of the field experiment as shown by the formation of new peaks via FTIR spectra; and 2) amounts of sediment organic matter, where the sorption of trace metals by the plastic particles decreased with increasing organic matter content (from 2.8 % to 15.8 %). Plastic particles play a minor role in trace metals sorption in the presence of organic matter at high concentrations as a result of competitive adsorption. Overall, the interaction of trace metals with sediment plastics was highly dynamic and to understand the key processes controlling this dynamic requires further study. This work contributed to our understanding on metal-plastic interactions in coastal intertidal sediments from urban environments and serve to support plastic pollution risk management and bioremediation studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.