Abstract

A novel γ-MnO2 hollow structure has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, γ-MnO2 hollow structure was used as adsorbent in radionuclide 60Co(II) treatment, and showed an excellent ability. The effect of pH, contact time, ionic strength, humic acid (HA)/fulvic acid (FA), and temperature was investigated using batch techniques. The results indicated that the sorption of 60Co(II) on γ-MnO2 was obviously dependent on pH values but independent of ionic strength. The presence of HA/FA enhanced the sorption of 60Co(II) on γ-MnO2 at low pH, whereas reduced 60Co(II) sorption on γ-MnO2 at high pH. The kinetic sorption of 60Co(II) on γ-MnO2 can be well fitted by the pseudo-second-order rate equation. The thermodynamic parameters (ΔH0, ΔS0, ΔG0) were also calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption of 60Co(II) on γ-MnO2 was a spontaneous and endothermic process. The sorption of 60Co(II) on γ-MnO2 was attributed to surface complexation rather than ion exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.