Abstract
The sorption of anionic perfluorochemical (PFC) surfactants of varying chain lengths to sediments was investigated using natural sediments of varying iron oxide and organic carbon content. Three classes of PFC surfactants were evaluated for sorptive potential: perfluorocarboxylates, perfluorosulfonates, and perfluorooctyl sulfonamide acetic acids. PFC surfactant sorption was influenced by both sediment-specific and solution-specific parameters. Sediment organic carbon, rather than sediment iron oxide content, was the dominant sediment-parameter affecting sorption, indicating the importance of hydrophobic interactions. However, sorption also increased with increasing solution [Ca2+] and decreasing pH, suggesting that electrostatic interactions play a role. Perfluorocarbon chain length was the dominant structural feature influencing sorption, with each CF2 moiety contributing 0.50-0.60 log units to the measured distribution coefficients. The sulfonate moiety contributed an additional 0.23 log units to the measured distribution coefficient, when compared to carboxylate analogs. In addition, the perfluorooctyl sulfonamide acetic acids demonstrated substantially stronger sorption than perfluorooctane sulfonate (PFOS). These data should prove useful for modeling the environmental fate of this class of contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.