Abstract

Sorption properties play a key role in the mobility of selenium (Se) and fraction distribution changes, leading to the bioavailability of Se in the soil environment. Thus, the effect of soil physicochemical properties on the sorption of exogenous selenite was investigated to predict the rate and capacity of sorption. Correlation analysis and multiple linear regression were used to observe the relationship between sorption characteristics and soil properties. Sequential extraction was used to observe the fractions of Se at different ages in soil. Results indicated that sorption isotherms followed the Langmuir equation, and the sorption capacity ranged from 50.7 to 567 mg·kg−1 with pseudo-second-order sorption kinetics. The correlation and multiple linear regression analyses showed that sorption parameters were significantly positively correlated with dithionite–citrate–bicarbonate-extracted Fe (FeDCB), dithionite–citrate–bicarbonate-extracted Al (AlDCB), amorphous Fe (FeOX), and soil organic matter (SOM), whereas pH was negatively correlated. Sequential extraction analyses revealed that the fraction distribution of Se in soil varied with the age, and the content of elemental Se increased with prolonged aging. FeDCB, AlDCB, FeOX, pH, and SOM play important roles in selenite sorption onto soils. Selenite sorption onto soil can be reduced to a lower-state Se, such as elemental Se and selenides, during the aging process. This information on the environmental behavior of Se is used to develop agronomic strategies for increasing Se levels in food crops and improving human health.

Highlights

  • Selenium (Se), as a component of antioxidant enzymes, contributes to animal and human growth

  • On the basis of American soil taxonomy, soils used in this study were classified as alfisols, ultisols, inceptisols, and entisols [31]

  • The relationship between sorption parameters and soil properties was investigated by statistical analysis to elucidate which properties controlled selenite sorption

Read more

Summary

Introduction

Selenium (Se), as a component of antioxidant enzymes, contributes to animal and human growth. The biological range of Se content is very narrow between deficiency, physiological, and toxic [2]. Se levels in human bodies are controlled through diet, and Se in food generally depends on its content and distribution fraction in soil [4]. Low Se levels in soil (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.